

Variable volume controls are designed to save energy by reducing the amount of air in Laboratory airflow control such as extracted by a fume cupboard, exhaust hoods and intake air. Extracting less air means less replacement air is needed. It is the heating, cooling and conditioning of this replacement air that uses the majority of energy associated with running a fume cupboard. As a fume cupboard sash is lowered, the opening area is reduced and less volume of air is required to provide the same velocity of air across the opening. A VAV control monitors the height of the sash or the face velocity and adjusts the extract volume accordingly, using a fast-acting motorised damper or similar.

ELEKTROTEKNIK VAV-A units can supply and install VAV control systems as part of a new fume cupboard / laboratory installation. Equally, we can install VAV controls retrospectively to existing fume cupboards as part of an energy saving exercise.

As well as the controls themselves we offer a number of ancillary items designed to maximise the energy savings VAV control offers, items such as:

- 1- Keeping a constant and proper face flow rate when the sash position change improve the safety.
- 2- VAV control system easily adapting to the system change could increase the flexibility of the laboratory.
- 3- All alarm and monitor function are typical components of VAV system.
- 4- Auto sash closure devices and reminders.
- 5- Supply air and room pressure control.

VAV-A High-speed variable volume flow controller Specs:

* High-speed, adaptive control algorithm for precise and stable control

- * Control time 3-5 s for a 90° angle
- * Suitable for supply air and exhaust air volume flow control in laboratories and clean rooms
- * Free programming of system data and retrieval of all actual values

* Monitoring of the customer ventilation system by integrated monitoring of the supply air/exhaust air setpoint that is to be regulated

* Static differential pressure transmitter for continuous measurement of the actual value within the range 3...300 pa (optionally 8...800 pa) with high long-term stability

Laboratory airflow control

The ELEKTROTEKNIK's VAV-A is the unifying element and the core of the laboratory airflow management system. It provides the following functions :

- Air volumes summation
- Laboratory make-up air control
- Temperature control
- Communication with BMS.

The VAV-A is a room controller that makes it possible both to control the temperature and the airflow in ΔP (pressure/vacuum control) or in ΔQ (airflow control). It carries out the summation of airflows, the air change rate and the temperature control. The VAV-S includes a differential pressure sensor, which makes it possible to control the make-up air.

The VAV-A's can communicate with any BMS.

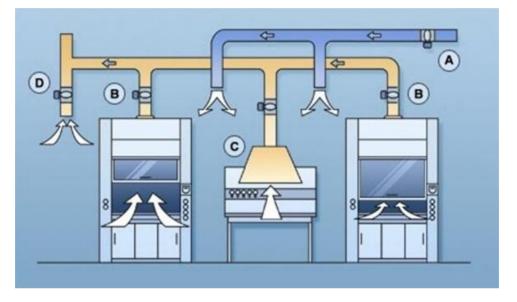
The VAV-A is made up of the following elements :

• Electronics that include the computer, the differential pressure sensor, the input/output modules and the terminal boards.

• A motorised damper, made out of galvanised steel, equipped with a differential pressure measurement sensor that measures the airflows.

• A module for displaying the temperature, airflow rates, alarms and set values.

When the air change rate requires it, a VAV-A's, complementary exhaust regulator, controlled by the VAV-A, is added to the network in order to very finely tune the make-up air.



Operating Principle

The principle of the VAV (Variable Air Volume) system in the laboratory consists in continuously adjusting the air exhaust and delivery rates in order to ensure containment in an optimum manner.

The different elements are managed by means of the following equipment :

Fume cupboards : Exhaust hoods : Laboratory : Complementary exhaust :

A-Variable airflow air delivery regulator

B- Variable airflow fume cupboard exhaust, as a function of the opening of the sash

C- Variable airflow hood exhaust, 2 to 3 airflows

D-Complementary back up exhaust, which controls the air circulation rate

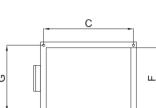
Fume cupboards :

Each fume cupboard is equipped with a VAV-A, face velocity and airflow management control system, which operates autonomous. The face velocity control maintains constant the air velocity at the fume cupboard sash, independently of its opening height and the pressure in the ductwork, by managing the exhaust airflow.

Laboratory :

The fume cupboards airflow values are collected and transmitted to the VAV-A. The VAV-A is at the very heart of the airflow control of the laboratory. It controls the make-up air, the temperature, the transmission of alarms and, if necessary, the complementary exhaust which ensures the air change rate, if the summation of all the fume cupboards extracted air volume is insufficient.

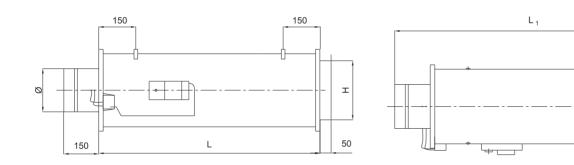
All the informations concerning the airflow, alarms and commands are transmitted from the different units to the VAV-A. Communication with the BMS is ensured via an external network.


Outside air compensates the extracted air in real time, while assuring the depression of the premises. The safety of the premises depends on this balance.

The VAV technique, which brings into play complex regulation loops, enables the energy consumption to be finely tuned to the actual requirements of the laboratory and thus to achieve very significant energy savings. The control system is therefore of key importance.

TECHNICAL DETAILS

Left side view


В

25

т

Right side view

VAV-A

Size	Air Vo (m:	olume 3/h)	A	В	с	ØD	E	F
	Min.	Max.						
125	50	500	250	200	220	123	255	200
160	100	1000	300	250	170	158	255	200
200	140	1400	400	400	420	198	255	200
250	225	2250	450	400	420	248	355	300
315	360	3600	650	600	620	313	355	300
355	450	4500	750	700	720	353	355	300
400	600	6000	900	850	870	398	355	300

Si e	G	Н	J	к	L	Lı
125	220	200	-	-	1200	1400
160	220	200	-	-	1200	1400
200	220	200	-	-	1200	1400
250	320	300	-	-	1500	1700
315	320	300	-	-	1500	1700
355	320	300	384	298	1800	2000
400	320	300	455	298	1800	2000

4

Sound Pressure Level

Sound Pressure Level Caused by Air (Supply Air)

Size	q _v			р	= 100	Pa (L	,)					р	= 200	Pa (L	")		
	m³/h	125 Hz	250 Hz	500 Hz	j 1000 Hz	2000 Hz	4000 Hz	8000 Hz	NR	125 Hz	250 Hz	500 Hz	j 1000 Hz	2000 Hz	4000 Hz	8000 Hz	NR
	200	27	22	2.4	dB				1.7	40	2.5	2.5	dB	1.6			10
	200	37	33	24	18	< 17	<	<	15	40	35	25	20	16	< 1.5	<	18
125	300	40	36	27	22	17	<	<	18	42	38	30	24	19	15	< 1.5	20
	400	44	39 42	31	26	20	<	<	21	46	41	34	28	22	17	15	23
	500 m ³ /h	46 125	42 250	35 500	30 1000	24 2000	< 4000	< 8000	24 NR	48 125	44 250	38 500	31 1000	25 2000	18 4000	15 8000	26 NR
	200	37	33	26	1000	< 2000	4000	8000 <	15	41	35	27	20	17	16	< 0000	17
	400	37	33	20 29	20	<	<	<	13 17	41	35	30	20 26	17	<	<	17
160	600	45	39	35	20	18	<	<	23	48	41	36	20 29	21	18	18	24
	800	51	44	40	30	25	17	15	23	53	46	41	32	26	21	20	2 4 29
	m ³ /h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	600	39	33	28	24	16	15	18	17	41	35	28	26	18	16	18	18
	800	43	34	31	22	17	15	18	18	44	37	33	27	20	17	20	20
200	1000	46	40	35	27	19	16	19	22	48	41	36	29	21	18	20	22
	1400	52	45	41	31	25	18	20	28	54	47	42	33	26	22	22	29
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	1400	46	38	31	26	19	16	20	20	50	41	35	29	22	20	25	23
	1600	47	42	35	28	22	18	21	23	50	44	38	32	26	25	25	25
250	1800	50	44	35	28	22	19	21	26	52	46	39	32	26	25	28	28
	2000	53	46	39	31	25	21	23	27	54	46	40	33	28	26	28	28
	2400	56	50	43	37	30	25	26	32	57	51	45	38	32	29	31	33
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	1200	45	37	29	-23	16	15	<	18	48	41	32	25	20	20	18	22
	1800	45	38	31	25	19	15	18	20	48	42	33	27	23	20	21	24
315	2400	48	41	34	27	22	20	19	24	51	45	37	30	27	24	23	28
	3000	52	46	36	30	25	18	18	28	54	48	42	34	30	28	29	31
	3600	55	49	40	34	28	21	21	31	57	51	46	37	34	32	31	33
	m^{3}/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR 24
	1500 2000	45 49	38 37	29 28	24 25	19 20	17 17	15 15	20 23	48 52	42 43	32 33	26 27	23 25	22 23	20 21	24 26
355	2600	49 52	37 40	28 31	23 26	20	20	15	23 27	52 55	43	33	27	23 26	25 25	21 25	20 30
333	3600	55	40	33	20	22	20	21	30	57	44 48	35 36	28 32	20 30	23 27	23 27	30 32
	4500	57	43 50	38	29 34	23 29	20	21	33	59	40 53	40	32 36	30 34	30	27 29	32 36
	4300 m ³ /h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	2600	47	36	26	24	2000	17	< 0000	21	50	41	32	26	2000	23	22	23
	3600	53	41	32	24	20	20	20	21	56	46	34	20 29	24	25 25	22	31
400	4500	55 54	44	34	30	25	23	20	28	57	48	37	32	20	27	27	32
	6000	57	51	38	35	31	24	23	34	60	54	40	37	35	30	30	37
	0000	51	51	50	55	51		25		00		10	51	55	50	50	51

Sound Pressure Level

Sound Pressure Level Caused by Air (Supply Air)

Size	q _v			p	= 500	Pa (L	.)					p	= 750	Pa (L	.)		
	m³/h	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	NR	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	NR
					dB								dB				
	200	43	39	30	25	22	20	17	21	44	43	32	26	22	20	19	26
125	300	47	41	34	26	23	19	18	24	48	44	35	28	24	20	18	27
	400	50	45	38	32	26	22	20	27	51	47	40	33	27	24	22	30
	500	53	48	42	36	28	23	21	31	54	50	44	37	30	25	22	33
	m ³ /h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	200	43	40	31	22	22	21	19	22	43	40	32	24	21	22	21	22
160	400	45 52	40	33	27	22	23	20	22	46	41	36	29	24	23	24	25
	600 800	53 59	45 50	40	35	29 22	26	25	28	54	47	42	37	31	27	28	30
	800 m ³ /h	58 125	50 250	46 500	38 1000	32 2000	28 4000	30 8000	34 NR	58 125	52 250	47 500	39 1000	34 2000	28 4000	31 8000	35
<u> </u>	600	47	40	36	30	2000	20	25	10K	49	43	38	32	2000	23	27	NR 26
	800	47 49	40	40	33	23	20	23	24 28	50	46	42	36	24	23	27	20 30
200	1000	55	46	40	35	27	20	23 24	28 32	56	40	44	38	30	24	27	30
	1400	59	53	48	39	31	22	31	36	60	55	49	41	34	29	32	38
	m ³ /h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	1400	55	46	42	37	2000	29	31	31	55	48	42	38	34	33	33	31
	1600	55	47	42	37	30	29	33	30	55	49	44	39	35	33	34	32
250	1800	56	49	43	39	33	31	35	32	57	52	45	40	36	34	38	35
	2000	58	52	44	40	34	33	36	35	59	54	47	42	37	36	39	37
	2400	60	55	48	42	36	36	38	38	61	55	50	44	42	39	39	38
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	1200	52	45	35	31	27	26	25	27	54	47	37	34	29	28	27	30
	1800	53	46	38	31	28	28	30	29	56	50	41	36	32	32	34	33
315	2400	56	50	42	36	33	31	30	33	58	52	45	39	35	34	34	35
	3000	59	54	47	39	36	34	33	37	61	56	49	42	-38	37	36	39
	3600	62	57	50	40	39	37	37	40	64	60	51	44	41	39	- 39	43
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	1500	55	48	36	31	29	30	28	30	58	51	38	33	32	31	30	33
	2000	49	37	28	25	20	17	15	23	52	43	33	27	25	23	21	26
355	2600	61	52	40	34	30	29	28	35	63	54	44	37	32	31	30	38
	3600	62	55	44	38	34	30	29	38	64	58	48	40	36	32	32	41
<u> </u>	4500	66	60	51	43	40	37	38	44	67	61	54	45	42	38	40	45
<u> </u>	m^{3}/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	2600	57	49 52	38	31	29	28	27	32	58	52	40	33	30	29	28	33
400	3600	62 (2	53	40	35	32	28	27	37	63	55	44	37	32	29	28	39
	4500	63 (5	53	44 50	39	33	29 26	29	38	64	58	47	40	35	32	32	40
	6000	65	59	50	43	40	36	36	42	67	60	51	44	42	37	37	43

Sound Pressure Level

Sound Pressure Caused by Unit Body (Supply Air)

Size	q _v			р	= 100	Pa (L)					р	= 200	Pa (L	")		
	m³/h	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	NR	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	NR
					dB		-						dB				
	200	41	34	23	17	15	<	<	15	45	35	25	18	15	15	<	18
125	300	44	38	27	21	16	15	<a< td=""><td>20</td><td>47</td><td>38</td><td>30</td><td>22</td><td>17</td><td>20</td><td>18</td><td>21</td></a<>	20	47	38	30	22	17	20	18	21
	400	47	40	30	25	18	19	<	22	51	41	34	26	20	23	20	25
	500	51	43	36	29	21	19	16	25	53	44	38	30	23	24	20	27
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	200	37	35	26	20	20	16	<	16	41	37	28	23	25	21	15	20
160	400	39	35	27	21	23	19	15	17	40	35	29	28	24	20	17	20
	600	45	40	34	28	26	21	20	22	48	41	36	31	29	23	22	24
	800	49	44	40	32	30	20	19	27	52	46	42	34	33	26	24	30
	m ³ /h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	600	43	38	30	29	25	22	21	20	46	40	31	32	28	24	22	23
200	800	46	40	34	28	25	21	21	22	49	42	35	32	29	24	24	24
	1000	50	44	38	31	28	23	22	25	53	46	39	35	31	26	25	28
	1400	56	49	42	36	35	24	23	31	59	52	44	39	35	28	26	35
	m^{3}/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	1400	45	39	34	29	23	18	16	22	50	42	38	33	26	22	23	26 29
250	1600	47	42	37	32	25	23	20	25	50	45	41	36	30	27	25	28
250	1800	49	44	39	33	27	25	23	26	52	47	43	36	30	27	27	31
	2000	51	46	41	36	28	26	24	29	53	48	42	38	32	28	28	30
	2400	55	50	45	42	33	28	26	34	57	53	47	43	36	32	30	36
	m ³ /h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR 24
	1200 1800	45	38	31 33	28 30	22 25	19 22	17 21	20 22	48 48	42 43	34 35	30 32	25 28	22 22	28	24 26
215	2400	47 49	40 45	35 36	33	23 29	22 26	21	22 26	48 51		39	32 35	33	22	21 23	26 28
315	3000	52	43 48	30 39	35	29 31	20	23 26	20 30	54	46 49	39 44	33 39	35	30	23 28	28 32
	3600	52	50	42	35 39	34	30	20	30	57	49 52	44	42	39	34	28 31	32 36
	m ³ /h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	1500	46	37	32	27	2000	19	19	20	47	40	33	28	2000	22	20	22
	2000	40 50	37	32 34	27	22	22	20	20	51	40	35	28 30	28	22	20	22 26
355	2600	53	39 41	34	29 30	24 29	22	20	23 26	54	41	35	31	28	24	22	20 28
555	3600	56	41	34	34	31	25	22	20 28	56	43 47	38	35	33	28	24 26	28 31
	4500	57	51	40	34	34	30	24	33	58	52	42	39	36	31	20	35
	m ³ /h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
	2600	48	35	29	27	2000	20	18	22	49	39	33	28	2000	23	22	23
	3600	40 54	43	35	27	24	20	24	22	55	44	35	28 31	29	23	22	23 29
400	4500	53	43 47	37	29 34	30	23	24	28 29	56	44	39	35	32	28	24 26	31
	6000	55 57	52	42	39	36	32	23	35	59	53	42	40	32	31	28	36
	0000	51	52	τ∠	37	50	54	27	55	59	55	74	ΨU	57	51	20	50

Sound Pressure Level

Sound Pressure Caused by nit Body (Supply Air)

Size	q _v			р	= 500	Pa (L	,)					р	= 750	Pa (L	,)		
	m³/h	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	NR	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	NR
					dB								dB				
125	200 300 400 500	48 52 55 58	39 41 45 48	34 38 42 46	30 31 37 41	25 26 29 31	26 25 28 29	22 23 25 26	23 26 29 34	49 53 56 60	42 45 47 50	36 41 44 47	31 33 41 42	28 30 34 37	25 25 28 30	25 25 27 28	24 29 29 33
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
160	200 400 600 800	44 45 53 58	41 40 45 50	32 33 41 47	29 29 37 40	27 30 37 40	27 28 31 33	23 24 29 33	22 22 28 35	45 47 53 58	42 41 46 51	34 36 42 47	30 31 40 43	30 31 38 41	29 30 32 37	25 27 30 34	23 24 32 36
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
200	600 800 1000 1400	52 54 60 63	45 49 51 58	39 43 47 51	36 39 41 44	33 37 35 41	27 28 30 36	29 28 29 36	28 32 35 41	53 54 61 64	47 50 53 59	41 44 47 51	40 42 43 46	34 37 37 42	30 33 35 37	30 32 34 35	32 32 35 41
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
250	1400 1600 1800 2000	55 55 56 58	47 48 50 53	45 45 47 47	41 41 44 43	33 34 37 38	31 31 34 33	30 31 34 33	33 33 36 36	56 56 56 58	49 49 52 54	46 47 48 49	48 42 44 45	36 37 38 40	33 34 35 39	33 33 35 37	34 35 36 37
	2400	60	57	52	47	40	39	38	40	61	57	53	49	45	42	39	41
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
315	1200 1800 2400 3000 3600	52 43 56 59 62	46 47 51 55 58	37 40 44 49 52	36 36 41 44 45	32 33 35 41 44	28 30 33 35 39	25 30 30 33 37	27 29 34 38 41	53 56 60 62 64	47 50 56 58 60	39 43 47 51 53	38 40 46 47 48	35 38 42 43 46	31 34 37 39 41	30 33 35 37 39	30 33 37 39 43
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
355	1500 2000 2600 3600 4500	54 57 60 61 63	47 49 52 55 58	37 40 42 46 51	33 35 37 41 45	31 32 33 34 42	29 30 30 31 36	25 26 27 28 34	29 32 36 38 41	56 59 61 62 64	49 52 54 57 59	41 45 49 52 54	35 37 40 44 47	32 34 36 39 43	30 32 32 34 37	27 28 28 32 36	31 34 37 40 42
	m³/h	125	250	500	1000	2000	4000	8000	NR	125	250	500	1000	2000	4000	8000	NR
400	2600 3600 4500 6000	57 62 63 64	48 52 52 58	40 42 46 52	33 38 42 45	31 34 34 42	27 27 30 35	24 25 28 32	32 37 38 41	56 61 62 64	50 54 57 58	43 47 50 51	35 40 44 46	32 35 38 43	30 28 34 42	25 26 34 38	33 37 40 41

Control Units

Technical data sheet

227CS-024-08-V Actuator without spring return for flow- or pressure control with GUAC

Description

Actuator for adjusting air dampers of 90° angle of rotation to be used in HVAC installations.

8 Nm

- Torque Motor
- Nominal Voltage
- Control
- 24 VAC/DC 6 ± 4 VDC (of GUAC)
- Damper sizeDamper coupling
- up to approx. 1,6 m² Clamp ◊ 8-12 mm / Ø 8-16 mm

Fechnical data

Nominal voltage	Nominal voltage	24 VAC/DC
	Nominal voltage range	1929 VAC/DC
	Power consuption Motor (Motion)	12,0 W
	Power consuption Standby (end position)	5,5 W
	Wire sizing	16,0 VA
	Control	6 ± 4 VDC (of GUAC)
	Position feedback	-
	Auxiliary switch	-
	Contact load	-
	Switching point	-
	Connection Motor	-
	Connection Auxiliary switch	-
	Connection Position feedback	-
	Connection GUAC	Cable 1000 mm with Phoenix connector
Functional data	Torque Motor	>8 Nm
	Synchronised speed	-
	Direction of rotation	switchable by GUAC with GUIV
	Manual override	Gearing latch disengaged with
		pushbutton, self-resetting
	Angle of rotation	0° max. 95°
		can be limited with adjustable mechanical
		end stop min 20°.
	Running time Motor	35 s / 90°
	Sound power level Motor	< 45 dB(A)
	Damper coupling	Clamp
		◊ 8-12 mm / Ø 8-16 mm
	Position indication	mechanical with pointer
	Service life	>60'000 cycles (0° - 95° - 0°)

Safety	Protection class	III (low voltage safety current)
	Degree of protection	IP54 (Cable downwards)
	EMC	CE (2004/108/EG)
	LVD	CE (2006/95/EG)
	RoHS	CE (2011/65/EU)
	Mode of operation	Typ 1 (EN 60730-1)
	Rated impulse voltage	0,8 kV (EN 60730-1)
	Control pollution degree	3 (EN 60730-1)
	Ambient temperature Normal operation	-30°+50°
	Storage temperature	-30°+80°
	Ambient humidity	595% r.F.,
		non- condensating (EN 60730-1)
	Maintenance	maintenance free
Dimensions/ Weight	Dimensions	115 x 65 x 89 mm
	Weight	ca. 530 g

Operating mode / Properties

Operating mode

Through connecting the power supply to BU+BN (1+2) with a standard signal Y to BK (3) of 6 ± 4 VDC (GUAC), moves the actuator to its specified position. The actual damper position 0...100% is provided as a feedback signal U.

The actuator is overload-proof, requires no limit switches and automatically stops when the end stop is reached.

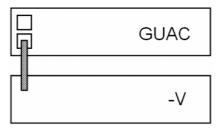
Direct mounting

Simple direct mounting on the damper spindle with a universal spindle clamp, supplied with an anti-rotation strap to prevent the actuator from rotating.

Direct connection (GUAC)

Simple direct mounting to the actuator used by Phoenix - plug - connection.

assembly (GUAC)


Easily attach with mounting tabs on the device.

Manual override

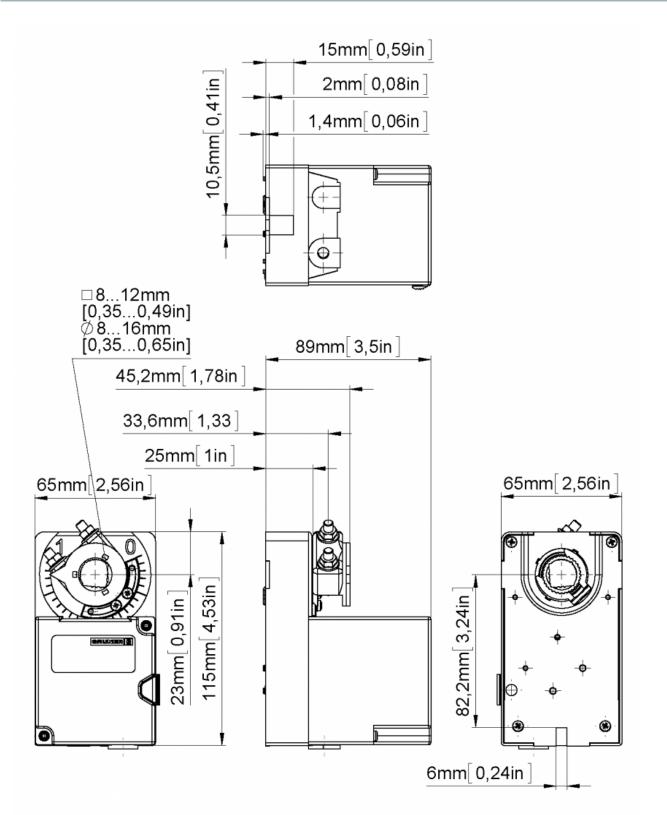
Manual override is possible with the self-resetting pushbutton (the gearing latch remains disengaged as long as the pushbutton is pressed)

Connection / Safety remarks

Safety remarks

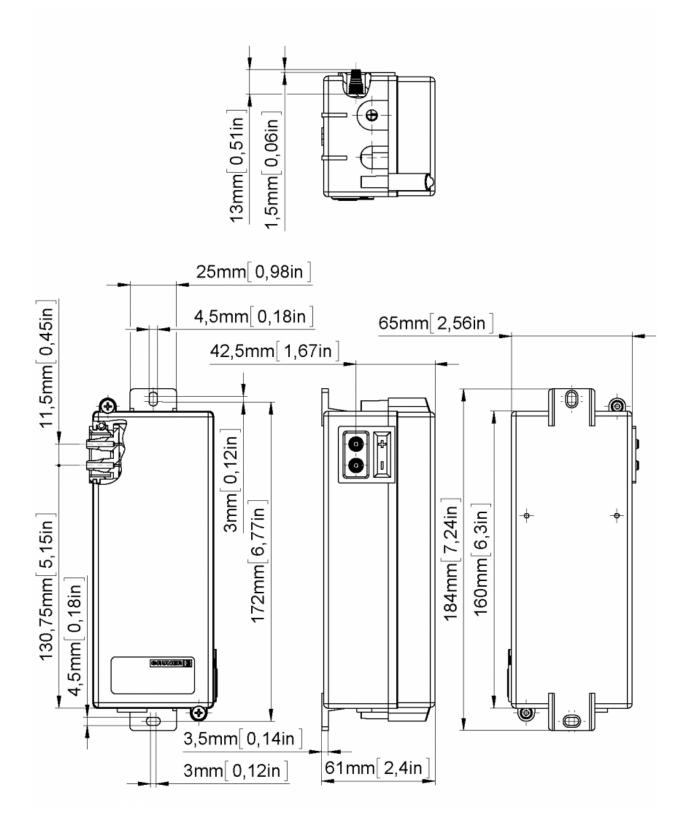
-Connect via safety isolation transformer -The actuator is not allowed to be used outside the specified field of application, especially in airplanes.

-In may only be installed by suitably trained personnel. Any legal regulations or regulations issued by authorities must be observed during assembly.


-The device may only be opened at the manufacturer's site.

-When calculating the required torque, the specifications supplied by the damper manufacturers (cross- section, design, installation site), and the air flow conditions must be observed.

-The actuator is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.


Fechnical drawing

VAV-A

12

Technical data sheet

GUAC-D3 Dynamic volume controller

Description

GUAC - to be used for flow control in conjunction with actuators.

- Nominal Voltage
- Control
- Pressure sensor
- Communication
- Connection of
- actuator
- Phoenix-type connection

24 VAC/DC

0(2)..10 V

0....300 Pa PP-Bus

- attachment
- slot 4,5 x 3 mm

Technical data

Nominal voltage

Functional data

Nominal voltage	24 VAC/DC
Nominal voltage range	1929 VAC/DC
Power consumption (without motor)	0,6 W
Dimensions (without motor)	1,2 VA
Control	0(2)10 VDC / Ri > 50 kΩ
	0(4)20 mA / Rext.= 500 Ω
Position feedback	0(2)10 VDC, max 0,5 mA
Communication	PP-Bus, 1200 Baud, max. 15 VDC
Priority control	closed / Vmin / Vmittlere / Vmax / open
connecting drive	Phoenix-connector with 1000 mm cable
connecting GUAC	Terminal Block for 4 x 0.75 mm ²
Connection GUIV	via diagnostic connector and
	Feedback signal U / PP
attachment	Fastening tabs on the device
	Slot 4.5 x 3 mm
Volume flow regulation	
Vnom	OEM-specific value,
	suitably VAV box type
Vmax	0100% von Vnom
Vmin	0100% von Vnom
Vmiddle	0100% von Vnom
Vconst	0100% von Vnom
Differential pressure sensor	
Operating pressure	0300 Pa
Breaking pressure	1 bar
Media	070°C / 595% Damper air,
	noncondensing

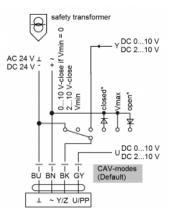
Fechnical data

	Characteristic	OEM-specific value and
		pressure transducer adapted
	Mounting position	independent of position
	material	ULtem
	Pressure connection	Tube clip inside Ø 4-6 mm
Safety		
	Protection class	III (low voltage safety current)
	Degree of protection	IP 42
	EMC	CE (2004/108/EG)
	LVD	CE (2006/95/EG)
	RoHS	CE (2011/65/EU)
	Mode of operation	Typ 1 (EN 60730-1)
	Rated impulse voltage	0,8 kV (EN 60730-1)
	Control pollution degree	3 (EN 60730-1)
	Ambient temperature Normal operation	0°C+50°C
	Storage temperature	-20°C+80°C
	Ambient humidity	595% r.F.,
		noncondensing (EN 60730-1)
	Maintenance	maintenance free
Dimensions/ Weight		
	Dimensions	184 x 65 x 61 mm
	Weight	375 g

Operating mode / Properties

Operating mode

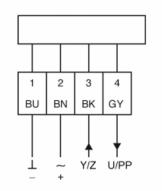
Through connecting the power supply to BU+BN (1+2) and a reference signal Y to BK (3) of 0(2)...10VDC, turns the connected drive on the specified volume flow. The current flow in% of V Nom is rated as a feedback signal U GY (4) as provided as a result signal for other actuators, this analog signal can be communicated by PP bus.

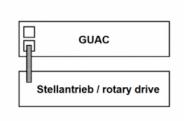

With a simple circuit with AC* / DC- signals to terminal Y to BK (3) different CAV-modes* in the form of override controls are feasible.

Direct connection

Simple direct mounting to the actuator used by Phoenix - plug - connection.

assembly


Easily attach with mounting tabs on the device.



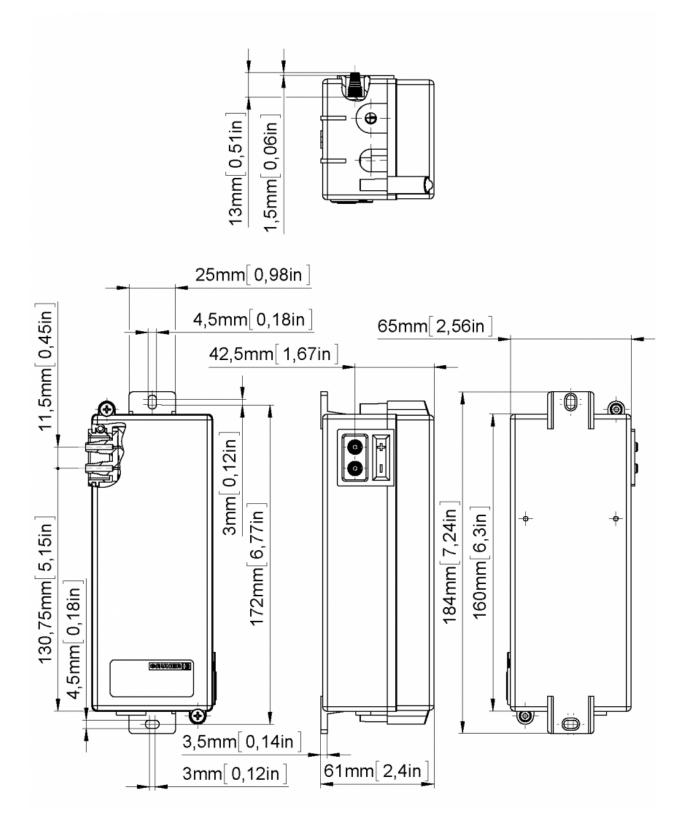
VAV-A

Connection / Safety remarks

Safety remarks

-Connect via safety isolation transformer -The actuator is not allowed to be used outside the specified field of application, especially in airplanes.

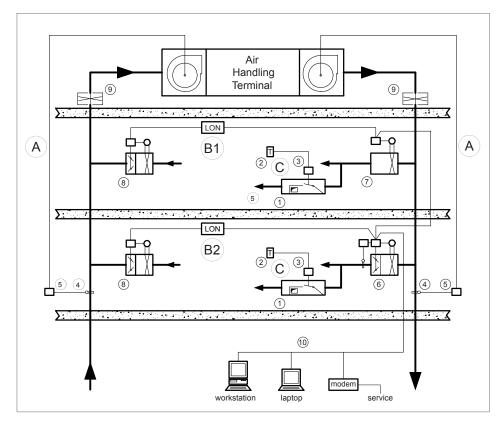
-In may only be installed by suitably trained personnel. Any legal regulations or regulations issued by authorities must be observed during assembly.


-The device may only be opened at the manufacturer's site.

-When calculating the required torque, the specifications supplied by the damper manufacturers (cross- section, design, installation site), and the air flow conditions must be observed.

-The actuator is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

Technical drawing



VAV-A

VAV-A

Example: VAV system with "BMS®" control

- 1. VAV terminal
- 2. Room thermostat
- 3. VAV controller
- 4. Duct static pressure sensor
- 5. Fan speed controller (VFD)
- 6. Air flow measuring and pressure control station
- 7. Air flow measuring station
- 8. Air flow measuring and control station
- 9. Air flow measuring station
- 10. Building Management System (BMS)

Control description

This type of control is used to prevent air fl owing from one room to another. The reason for this can be that the air in one of the rooms is

polluted or too hot or too cold.

The pressure in both rooms can be controlled by a difference between supply and return air. Positive (over) pressure is created when the supply air volume is more than the return or exhaust air volume. Negative (under) pressure is created more air is exhausted than supplied.

The "ELEKTROTEKNIK BMS CONTROL" system combines these loops to give maximum energy savings under all load conditions.

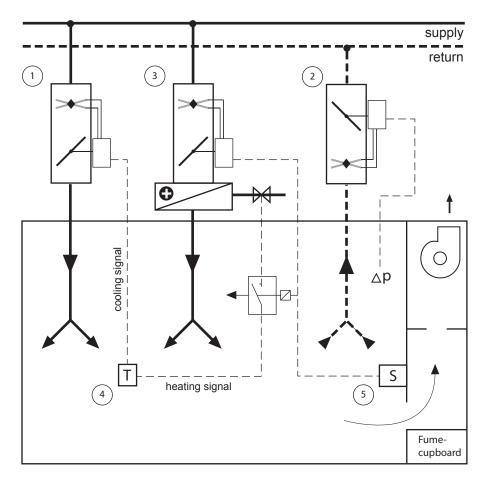
A. Speed control of central AHU: The supply fan is controlled to keep the required pressure in the riser(s) to a minimum value but still allowing the system to maintain the design room conditions.

The extract fan can be controlled by equalising supply and extract air fl ows to give the required

under / over pressure in the building.

B. "ELEKTROTEKNIK BMS CONTROL", supply and return air balancing, with or without pressure control
B1. without pressure control:
The supply airfl ow is constantly measured and the extract air fl ow is matched or controlled to give the required under/over pressure per fl oor or zone.
B2. with pressure control:
The supply duct pressure is controlled to the minimum value that still allows the VAV terminals in this zone to maintain the design

room conditions.


C. Room temperature control:

A VAV terminal controls the air volume to the room, depending on the cooling or heating load

required thus saving energy consumption.

Example: Room pressure control for laboratory with fume-cupboard

Reference list:

1. VAV-A terminal for room temperature control:

- 2. Pressure control station with airflow measuring sensor:
- 3. VAV-A terminal with integral reheat coil for room temperature control:
- 4. Room thermostat or room temperature sensor
- 5. Fan speed switch for fume-cupboard

Control description

Under normal conditions (fume-cupboard switched off), the room temperature is controlled by the VAV-A controller (1) and room pressure is kept at the required value with pressure control station (2). When the fume-cupboard is switched on, the supply air must be raised or exhaust air must be lowered, in order to keep the room pressure at the required value. When the airflow, extracted by the fume-cupboard, is to high to be compensated by the pressure controller (2) an additional VAV-A terminal (3) is necessary to compensate the high extract air volume. To prevent under cooling the room/laboratory with the high (primary) supply air volume the additional VAV-A controller can be equipped with a reheat coil.

Fabrika / Factory - Ýstanbul Atatürk Cad. (Baraj yolu) Çaðatay Sk No:3 Sargazi Sancaktepe / Ýstanbul / TURKEY 34785 Tel. / Phone : +90 216 499 14 64 (Pbx) Faks / Fax : +90 216 499 66 19

Fabrika / Factory - Eskiþehir Eskiþehir OSB Pehitler Bulvarý 15. Cad. No:29/A Eskiþehir / TURKEY Tel. / Phone : +90 222 236 20 40 Faks / Fax : +90 222 236 20 49

www.elektroteknik.com.tr / info@elektroteknik.com.tr

Fabrika / Factory - Eskiþehir Eskiþehir OSB Pehitler Bulvarý 15. Cad. No:29/B Eskiþehir / TURKEY Tel. / Phone : +90 222 236 20 40 Faks / Fax : +90 222 236 20 49